FDU CS自学指南
Search...
Ctrl
K
补充内容
其他好书推荐
Previous
强化学习算法与理论基础
Next
其他课程推荐
Last updated
3 months ago
本版块列举一下编者推荐、但未被列入其他版块的书籍:
Introductory Books
C++ Programming
Python Programming
Go Programming
Concurrency & Parallel & Distributed Systems
Compilers & PL
Design & Development
TCS
Systems & Architecture
Big Data & Databases
Reinforcement Learning
Statistics & Causal Inference & Optimization
Career Development
Trading & Finance
Yale N. Patt - 计算机系统概论
Behrouz Forouzan - 计算机科学导论
Charles Petzold - 编码:隐匿在计算机软硬件背后的语言
吴军 - 数学之美
Bjarne Stroustrup - C++程序设计原理与实践
Anthony Williams - C++并发编程实战
侯捷 - STL源码剖析
Luciano Ramalho - 流畅的Python
Brett Slatkin - Effective Python
崔庆才 - Python 3网络爬虫开发实战
任洪彩 - Go专家编程
Kirill Bobrov - Grokking Concurrency
周志明 - 凤凰架构:构建可靠的大型分布式系统
Thorsten Ball - 用Go语言自制解释器
Thorsten Ball - 用Go语言自制编译器
Brain Kernighan - 程序设计实践
Robert C. Martin - 敏捷软件开发
Erich Gamma - 设计模式:可复用面向对象软件的基础
Elisabeth Freeman - Head First 设计模式
Chris Richardson - 微服务架构设计模式
John Ousterhout - A Philosophy of Software Design
Martin Fowler - 重构:改善既有代码的设计
Tom Stuart - 计算的本质
Cristopher Moore - The Nature of Computation
Donald Knuth - Concrete Mathematics: A Foundation for Computer Science
David MacKay - Information Theory, Inference and Learning Algorithms
David A. Patterson - Computer Organization and Design RISC-V Edition
Urs Hoelzle - The Datacenter as a Computer
张俊林 - 大数据日知录
Matt Housley - Fundamentals of Data Engineering
Michael Stonebraker - Readings in Database Systems
Marko Lukša - Kubernetes in Action
Tyler Akidau - Streaming Systems
张磊 - 深入剖析Kubernetes
黄健宏 - Redis设计与实现
朱忠华 - 深入理解Kafka:核心设计与实践原理
Mykel Kochenderfer - Algorithms for Decision Making
王树森 - 深度强化学习
Hernán MA - Causal Inference: What If
Judea Pearl - The Book of Why
Judea Pearl - 统计因果推理入门
Judea Pearl - Causality: Models, Reasoning and Inference
Stephen Morgan - Counterfactuals and Causal Inference
Trevor Hastie - Computer Age Statistical Inference
Peter Westfall - Understanding Advanced Statistical Methods
Larry Wasserman - All of Nonparametric Statistics
Richard McElreath - Statistical Rethinking: A Bayesian Course with Examples in R and Stan
温斯顿 - 运筹学:应用范例与解法
Yurii Nesterov - Introductory Lectures on Convex Optimization
Dimitris Bertsimas - Introduction to Linear Optimization
俞甲子 - 程序员的自我修养
David Thomas - 程序员修炼之道
Camille Fournier - 技术为径
吴军 - 浪潮之巅
Stefan Jansen - Machine Learning for Algorithmic Trading
Tikhon Jelvis - Foundations of Reinforcement Learning with Applications in Finance
Xinfeng Zhou - A Practical Guide To Quantitative Finance Interviews
Mark Joshi - Quant Job Interview Questions And Answers
Yves Hilpisch - Python金融衍生品大数据分析
Sebastien Donadio - Developing High-Frequency Trading Systems
Timothy Crack - Heard on the Street: Quantitative Questions from Wall Street Job Interviews
Quant Wiki 中文量化百科