FDU CS自学指南
Search...
Ctrl
K
补充内容
机器学习理论
Previous
机器学习数学基础
Next
机器学习系统
Last updated
10 days ago
General
Blogs & Seminars
Reinforcement Learning
Generative Models
Probability & Statistics
Algorithms
Causal Inference
Others
张潼 - Mathematical Analysis of Machine Learning Algorithms
文再文 - 大数据分析中的算法
滕佳烨 - 机器学习理论简明手册
NYU Mathematical Tools for Data Science
Stanford CS229M Machine Learning Theory
Stanford STATS385 Analyses of Deep Learning
MIT 6.438 Algorithms for Inference
Caltech CS159 Neural Network Theory: Learning & Generalisation
NYU DA-GA3001 Modern Topics in Statistical Learning Theory
Cornell CS4787 Principles of Large-Scale Machine Learning
International Seminar on Foundational Artificial Intelligence
NYU Math and Data Seminar
Princeton Machine Learning Theory Summer School
苏剑林 - 科学空间
Lilian Weng's Blog
Building Blocks for AI Systems
RLChina 强化学习社区
Princeton ECE524 Foundations of Reinforcement Learning
UIUC CS598 Statistical Reinforcement Learning
Stanford CS234 Reinforcement Learning
Cornell CS6789 Foundations of Reinforcement Learning
Caltech CS159 Predictive Control & Model-based Reinforcement Learning
Dimitri Bertsekas - Reinforcement Learning
Stanford CS236 Deep Generative Models
Cornell CS6785 Deep Generative Models
CMU 10-708 Probabilistic Graphical Models
UW CS599 Generative Models
CMU 36-708 Statistical Methods for Machine Learning
UW-Madison STAT710 Mathematical Statistics
Stanford Statistical Learning with Sparsity
Gaussian Process Summer Schools
PKU Modern Computational Statistics
UCL GR8201 Bayesian Nonparametrics
UCB Stat240 Robust and Nonparametric Statistics
Yale ECE598 Information-theoretic Methods in High-Dimensional Statistics
MIT 18.S997 High-Dimensional Statistics
UCI High-Dimensional Probability and Applications in Data Science
Caltech CS159 Data-Driven Algorithm Design
Harvard CS229r Algorithms for Big Data
UCB CS294 Sketching Algorithms
Simons Institute Sketching and Algorithm Design
UW CS422 Toolkit for Modern Algorithms
Mila Introduction to Causal Inference
UCI CS295 Causal Reasoning
UPenn A Crash Course in Causality: Inferring Causal Effects from Observational Data
Simons Institute Online Learning & Convex Optimization
Simons Institute Geometric Methods in Optimization and Sampling
Caltech CS159 Online Learning, Interactive Machine Learning, and Learning from Human Feedback
EPFL MATH512 Optimization on Manifolds
Stanford EE274 Data Compression, Theory and Applications
MIT Introduction to Data-Centric AI
UW Sparsity and Compression Sensing
UW CS599 Sparsification, Sampling, and Optimization
UW-Madsion CS728 Integer Optimization